Объем шара. Описание алгеброй гармонии

Около пирамиды можно описать шар тогда и только тогда, когда около ее основания можно описать окружность.

Чтобы построить центр О этого шара, нужно:

1. Найти центр О, окружности, описанной около основания.

2. Через точку О, провести прямую, перпендикулярную плоскости основания.

3. Через середину любого бокового ребра пирамиды провести плоскость, перпендикулярную этому ребру.

4. Найти точку О пересечения построенных прямой и плоскости.

Частный случай: боковые ребра пирамиды равны. Тогда:

шар описать можно;

центр О шара лежит на высоте пирамиды;

Где - радиус описанного шара; - боковое ребро; Н - высота пирамиды.

5.2. Шар и призма

Около призмы можно описать шар тогда и только тогда, когда призма прямая и около ее основания можно описать окружность.

Центром шара служит середина отрезка, соединяющего центры описанных около оснований окружностей.

где - радиус описанного шара; - радиус описанной около основания окружности; Н - высота призмы.

5.3. Шар и цилиндр

Около цилиндра шар можно описать всегда. Центром шара служит центр симметрии осевого сечения цилиндра.

5.4. Шар и конус

Около конуса шар можно описать всегда. Центром шара; служит центр окружности, описанной около осевого сечения конуса.

Тема “Разные задачи на многогранники, цилиндр, конус и шар” является одной из самых сложных в курсе геометрии 11 класса. Перед тем, как решать геометрические задачи, обычно изучают соответствующие разделы теории, на которые ссылаются при решении задач. В учебнике С.Атанасяна и др. по данной теме (стр. 138) можно найти только определения многогранника, описанного около сферы, многогранника, вписанного в сферу, сферы, вписанной в многогранник, и сферы, описанной около многогранника. В методических рекомендациях к этому учебнику (см. книгу “Изучение геометрии в 10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159) сказано, какие комбинации тел рассматриваются при решении задач № 629–646, и обращается внимание на то, что “при решении той или иной задачи прежде всего нужно добиться того, чтобы учащиеся хорошо представляли взаимное расположение указанных в условии тел”. Далее приводится решение задач №638(а) и №640.

Учитывая все выше сказанное, и то, что наиболее трудными для учащихся являются задачи на комбинацию шара с другими телами, необходимо систематизировать соответствующие теоретические положения и сообщить их учащимся.

Определения.

1. Шар называется вписанным в многогранник, а многогранник описанным около шара, если поверхность шара касается всех граней многогранника.

2. Шар называется описанным около многогранника, а многогранник вписанным в шар, если поверхность шара проходит через все вершины многогранника.

3. Шар называется вписанным в цилиндр, усеченный конус (конус), а цилиндр, усеченный конус (конус) – описанным около шара, если поверхность шара касается оснований (основания) и всех образующих цилиндра, усеченного конуса (конуса).

(Из этого определения следует, что в любое осевое сечение этих тел может быть вписана окружность большого круга шара).

4. Шар называется описанным около цилиндра, усеченного конуса (конуса), если окружности оснований (окружность основания и вершина) принадлежат поверхности шара.

(Из этого определения следует, что около любого осевого сечения этих тел может быть описана окружность большего круга шара).

Общие замечания о положении центра шара.

1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.

2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.

Комбинация шара с призмой.

1. Шар, вписанный в прямую призму.

Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.

Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.

Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.

2. Шар, описанный около призмы.

Теорема 2. Шар можно описать около призмы в том и только в том случае, если призма прямая и около ее основания можно описать окружность.

Следствие 1 . Центр шара, описанного около прямой призмы, лежит на середине высоты призмы, проведенной через центр круга, описанного около основания.

Следствие 2. Шар, в частности, можно описать: около прямой треугольной призмы, около правильной призмы, около прямоугольного параллелепипеда, около прямой четырехугольной призмы, у которой сумма противоположных углов основания равна 180 градусов.

Из учебника Л.С.Атанасяна на комбинацию шара с призмой можно предложить задачи № 632, 633, 634, 637(а), 639(а,б).

Комбинация шара с пирамидой.

1. Шар, описанный около пирамиды.

Теорема 3. Около пирамиды можно описать шар в том и только в том случае, если около ее основания можно описать окружность.

Следствие 1. Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через сере дину этого ребра.

Следствие 2. Если боковые ребра пирамиды равны между собой (или равно наклонены к плоскости основания), то около такой пирамиды можно описать шар.Центр этого шара в этом случае лежит в точке пересечения высоты пирамиды (или ее продолжения) с осью симметрии бокового ребра, лежащей в плоскости бокового ребра и высоты.

Следствие 3. Шар, в частности, можно описать: около треугольной пирамиды, около правильной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.

2. Шар, вписанный в пирамиду.

Теорема 4. Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.

Следствие 1. Центр шара, вписанного в пирамиду, у которой боковые грани одинаково наклонены к основанию, лежит в точке пересечения высоты пирамиды с биссектрисой линейного угла любого двугранного угла при основании пирамиды, стороной которого служит высота боковой грани, проведенная из вершины пирамиды.

Следствие 2. В правильную пирамиду можно вписать шар.

Из учебника Л.С.Атанасяна на комбинацию шара с пирамидой можно предложить задачи № 635, 637(б), 638, 639(в),640, 641.

Комбинация шара с усеченной пирамидой.

1. Шар, описанный около правильной усеченной пирамиды.

Теорема 5. Около любой правильной усеченной пирамиды можно описать шар. (Это условие является достаточным, но не является необходимым)

2. Шар, вписанный в правильную усеченную пирамиду.

Теорема 6. В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.

На комбинацию шара с усеченной пирамидой в учебнике Л.С.Атанасяна есть всего лишь одна задача (№ 636).

Комбинация шара с круглыми телами.

Теорема 7. Около цилиндра, усеченного конуса (прямых круговых), конуса можно описать шар.

Теорема 8. В цилиндр (прямой круговой) можно вписать шар в том и только в том случае, если цилиндр равносторонний.

Теорема 9. В любой конус (прямой круговой) можно вписать шар.

Теорема 10. В усеченный конус (прямой круговой) можно вписать шар в том и только в том случае, если его образующая равна сумме радиусов оснований.

Из учебника Л.С.Атанасяна на комбинацию шара с круглыми телами можно предложить задачи № 642, 643, 644, 645, 646.

Для более успешного изучения материала данной темы необходимо включать в ход уроков устные задачи:

1. Ребро куба равно а. Найти радиусы шаров: вписанного в куб и описанного около него. (r = a/2, R = a3).

2. Можно ли описать сферу (шар) около: а) куба; б) прямоугольного параллелепипеда; в) наклонного параллелепипеда, в основании которого лежит прямоугольник; г) прямого параллелепипеда; д) наклонного параллелепипеда? (а) да; б) да; в) нет; г) нет; д) нет)

3. Справедливо ли утверждение, что около любой треугольной пирамиды можно описать сферу? (Да)

4. Можно ли описать сферу около любой четырехугольной пирамиды? (Нет, не около любой четырёхугольной пирамиды)

5. Какими свойствами должна обладать пирамида, чтобы около нее можно было описать сферу? (В её основании должен лежать многоугольник, около которого можно описать окружность)

6. В сферу вписана пирамида, боковое ребро которой перпендикулярно основанию. Как найти центр сферы? (Центр сферы – точка пересечения двух геометрических мест точек в пространстве. Первое – перпендикуляр, проведённый к плоскости основания пирамиды, через центр окружности, описанной около него. Второе – плоскость перпендикулярная данному боковому ребру и проведённая через его середину)

7. При каких условиях можно описать сферу около призмы, в основании которой – трапеция? (Во-первых, призма должна быть прямой, и, во-вторых, трапеция должна быть равнобедренной, чтобы около неё можно было описать окружность)

8. Каким условиям должна удовлетворять призма, чтобы около нее можно было описать сферу? (Призма должна быть прямой, и её основанием должен являться многоугольник, около которого можно описать окружность)

9. Около треугольной призмы описана сфера, центр которой лежит вне призмы. Какой треугольник является основанием призмы? (Тупоугольный треугольник)

10. Можно ли описать сферу около наклонной призмы? (Нет, нельзя)

11. При каком условии центр сферы, описанной около прямой треугольной призмы, будет находится на одной из боковых граней призмы? (В основании лежит прямоугольный треугольник)

12. Основание пирамиды – равнобедренная трапеция.Ортогональная проекция вершины пирамиды на плоскость основания – точка, расположенная вне трапеции. Можно ли около такой трапеции описать сферу? (Да, можно. То что ортогональная проекция вершины пирамиды расположена вне её основания, не имеет значения. Важно, что в основании пирамиды лежит равнобедренная трапеция – многоугольник, около которого можно описать окружность)

13. Около правильной пирамиды описана сфера. Как расположен ее центр относительно элементов пирамиды? (Центр сферы находится на перпендикуляре, проведенном к плоскости основания через его центр)

14. При каком условии центр сферы, описанной около прямой треугольной призмы, лежит: а) внутри призмы; б) вне призмы? (В основании призмы: а) остроугольный треугольник; б) тупоугольный треугольник)

15. Около прямоугольного параллелепипеда, ребра которого равны 1 дм, 2 дм и 2 дм, описана сфера. Вычислите радиус сферы. (1,5 дм)

16. В какой усеченный конус можно вписать сферу? (В усечённый конус, в осевое сечение которого можно вписать окружность. Осевым сечением конуса является равнобедренная трапеция, сумма её оснований должна равняться сумме её боковых сторон. Другими словами, у конуса сумма радиусов оснований должна равняться образующей)

17. В усеченный конус вписана сфера. Под каким углом образующая конуса видна из центра сферы? (90 градусов)

18. Каким свойством должна обладать прямая призма, чтобы в нее можно было вписать сферу? (Во-первых, в основании прямой призмы должен лежать многоугольник, в который можно вписать окружность, и, во-вторых, высота призмы должна равняться диаметру вписанной в основание окружности)

19. Приведите пример пирамиды, в которую нельзя вписать сферу? (Например, четырёхугольная пирамида, в основании которой лежит прямоугольник или параллелограмм)

20. В основании прямой призмы лежит ромб. Можно ли в эту призму вписать сферу? (Нет, нельзя, так как около ромба в общем случае нельзя описать окружность)

21. При каком условии в прямую треугольную призму можно вписать сферу? (Если высота призмы в два раза больше радиуса окружности, вписанной в основание)

22. При каком условии в правильную четырехугольную усеченную пирамиду можно вписать сферу? (Если сечением данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно ей, является равнобедренная трапеция, в которую можно вписать окружность)

23. В треугольную усеченную пирамиду вписана сфера. Какая точка пирамиды является центром сферы? (Центр вписанной в данную пирамиду сферы находится на пересечении трёх биссектральных плоскостей углов, образованных боковыми гранями пирамиды с основанием)

24. Можно ли описать сферу около цилиндра (прямого кругового)? (Да, можно)

25. Можно ли описать сферу около конуса, усеченного конуса (прямых круговых)? (Да, можно, в обоих случаях)

26. Во всякий ли цилиндр можно вписать сферу? Какими свойствами должен обладать цилиндр, чтобы в него можно было вписать сферу? (Нет, не во всякий: осевое сечение цилиндра должно быть квадратом)

27. Во всякий ли конус можно вписать сферу? Как определить положение центра сферы, вписанной в конус? (Да, во всякий. Центр вписанной сферы находится на пересечении высоты конуса и биссектрисы угла наклона образующей к плоскости основания)

Автор считает, что из трех уроков, которые отводятся по планированию на тему “Разные задачи на многогранники, цилиндр, конус и шар”, два урока целесообразно отвести на решение задач на комбинацию шара с другими телами. Теоремы, приведенные выше, из-за недостаточного количества времени на уроках доказывать не рекомендуется. Можно предложить учащимся, которые владеют достаточными для этого навыками, доказать их, указав (по усморению учителя) ход или план доказательства.

Здравствуйте! В этой статье мы с вами рассмотрим задачи с шарами. Вернее здесь будет комбинация тел: шар или другими словами цилиндр описанный около шара (что одно и тоже) и куб вписанный в шар.

На блоге уже рассмотрена группа задач с шарами, . В представленных заданиях речь пойдёт о нахождении объёма и площади поверхности указанных тел. которые необходимо знать!

Формула объёма шара:

Формула площади поверхности шара:

Формула объёма цилиндра:

Формула площади поверхности цилиндра:


Подробнее о площади боковой поверхности цилиндра:

Она представляет собой «скрученный» в цилиндр прямоугольник одна сторона которого равна длине окружности основания — это 2ПiR, другая сторона равна высоте цилиндра — это Н.

Что стоит отметить касаемо представленных задач?

1. Если шар вписан в цилиндр, то у них общий радиус.

2. Высота цилиндра описанного около шара равна двум его радиусам (или диаметру).

3. Если куб вписан в шар, то диагональ этого куба равна диаметру шара.

245348. Цилиндр описан около шара. Объем цилиндра равен 33. Найдите объем шара.

Формула объёма шара:

Необходимо найти радиус шара.

У шара и у цилиндра общий радиус. Основание цилиндра это круг с радиусом R, высота цилиндра равна двум радиусам. Значит объём цилиндра вычисляется по формуле:

Подставим данный в условии объём в формулу и выразим радиус:

Оставим выражение в таком виде, выражать радиус (извлекать корень третьей степени) не обязательно, так как нам понадобится именно R 3 .

Таким образом, объём шара будет равен:

Ответ: 22

245349. Цилиндр описан около шара. Объем шара равен 24. Найдите объем цилиндра.

Эта задача обратная предыдущей.

Формула объёма шара:

Объём цилиндра вычисляется по формуле:

Так как объём шара известен, то мы можем выразить радиус и уже далее найти объём цилиндра:

Таким образом:

Ответ: 36

316557. Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.

Формула поверхности шара:

Формула поверхности цилиндра:


Упростим:

Так как площадь поверхности шара нам дана, то мы можем выразить радиус:

Ответ: 166,5

Окружающий нас мир, несмотря на многообразие предметов и происходящих с ними явлений, преисполнен гармонии благодаря чёткому действию законов природы. За кажущейся свободой, с которой природа рисует очертания и создаёт формы вещей, скрываются чёткие правила и законы, невольно наталкивающие на мысль о присутствии в процессе созидания какой-то высшей силы. На грани прагматической науки, дающей описание происходящим явлениям с позиции математических формул и теософских мировоззрений, существует мир, дарящий нам весь букет эмоций и впечатлений от наполняющих его вещей и происходящих с ними событий.

Шар как является наиболее часто встречающейся в природе формой для физических тел. Большинство тел макромира и микромира имеют форму шара или же стремятся приблизиться к таковой. По сути, шар является примером идеальной формы. Общепринятым определением для шара принято считать следующее: это геометрическое тело, совокупность (множество) всех точек пространства, которые находятся от центра на расстоянии, не превышающем заданного. В геометрии это расстояние получило название радиуса, а применительно к данной фигуре оно называется радиусом шара. Другими словами, в объём шара заключены все точки, находящиеся на расстоянии от центра, не превышающем длину радиуса.

Шар еще рассматривают как результат вращения полукруга вокруг его диаметра, который при этом остаётся неподвижным. При этом к таким элементам и характеристикам, как радиус и объём шара, добавляется ось шара (неподвижный диаметр), а его концы называются полюсами шара. Поверхность шара принято называть сферой. Если имеем дело с замкнутым шаром, то он включает эту сферу, если с открытым, то он её исключает.

Рассматривая дополнительно связанные с шаром определения, следует сказать о секущих плоскостях. Проходящую сквозь центр шара секущую плоскость принято называть большим кругом. Для других плоских сечений шара принято применять название «малые круги». При вычислении площадей этих сечений используется формула πR².

Вычисляя объём шара, математики столкнулись с довольно увлекательными закономерностями и особенностями. Оказалась, что эта величина либо полностью повторяет, либо очень близка по способу определения к объёму пирамиды или описанного вокруг шара цилиндра. Получается, что объем шара равен если её основание имеет такую же площадь, как поверхность шара, а высота равна радиусу шара. Если же рассмотреть описанный вокруг шара цилиндр, то можно вычислить закономерность, согласно которой объем шара меньше объёма этого цилиндра в полтора раза.

Привлекательно и оригинально выглядит способ вывода шара при помощи принципа Кавальери. Он заключается в нахождении объёма любой фигуры путём сложения площадей, полученных её сечением бесконечным количеством Для вывода возьмём полушар радиусом R и цилиндр, имеющий высоту R с основанием-кругом радиусом R (основания полушара и цилиндра расположены в одной плоскости). В данный цилиндр вписываем конус с вершиной в центре нижнего его основания. Доказав, что объём полушара и части цилиндра, оказавшиеся за пределами конуса, равны, легко высчитаем объем шара. Формула его приобретает следующий вид: четыре третьих произведения куба радиуса на π (V= 4/3R^3×π). Это легко доказать, проведя общую секущую плоскость через полушар и цилиндр. Площади малого круга и кольца, ограниченного снаружи сторонами цилиндра и конуса, равны. А, используя принцип Кавальери, нетрудно прийти к доказательству основной формулы, с помощью которой мы и определяем объем шара.

Но не только с проблемой изучения природных тел связано нахождение способов определения различных их характеристик и свойств. Такая фигура стереометрии, как шар очень широко используется в практической деятельности человека. Масса технических устройств имеет в своих конструкциях детали не только шарообразной формы, но и составленные из элементов шара. Именно копирование идеальных природных решений в процессе человеческой деятельности даёт наиболее качественные результаты.

Понравилась статья? Поделиться с друзьями: